https://doi.org/10.1088/1748-9326/ad677f ·
Видання: Environmental Research Letters, 2024, №9, с.094018
Видавець: IOP Publishing
Автори:
- Andrew D King
- Luke J Harrington
- Ed Hawkins
- Seungmok Paik
- Ruby Lieber
- Seung-Ki Min
- Alexander R Borowiak
Анотація
Abstract The emergence of a climate change signal relative to background variability is a useful metric for understanding local changes and their consequences. Studies have identified emergent signals of climate change, particularly in temperature-based indices with weaker signals found for precipitation metrics. In this study, we adapt climate analogue methods to examine multivariate climate change emergence over the historical period. We use seasonal temperature and precipitation observations and apply a sigma dissimilarity method to demonstrate that large local climate changes may already be identified, particularly in low-latitude regions. The multivariate methodology brings forward the time of emergence by several decades in many areas relative to analysing temperature in isolation. We observed particularly large departures from an early-20th century climate in years when the global warming signal is compounded by an El Niño-influence. The latitudinal dependence in the emergent climate change signal means that lower-income nations have experienced earlier and stronger emergent climate change signals than the wealthiest regions. Analysis based on temperature and precipitation extreme indices finds weaker signals and less evidence of emergence but is hampered by lack of long-running observations in equatorial areas. The framework developed here may be extended to attribution and projections analyses.
Джерела фінансування
- Australian Research Council
- Australian Government National Environmental Science Program
Список літератури
- Abatzoglou, Multivariate climate departures have outpaced univariate changes across global lands, Sci. Rep., № 10, с. 1
https://doi.org/10.1038/s41598-020-60270-5 - Beaumont, Impacts of climate change on the world’s most exceptional ecoregions, Proc. Natl Acad. Sci. USA, № 108, с. 2306
https://doi.org/10.1073/pnas.1007217108 - Center for International Earth Science Information Network—CIESIN—Columbia University, Gridded population of the world (GPW), v4: basic demographic characteristics, v4.11
- Compo, The Twentieth Century Reanalysis Project, Q. J. R. Meteorol. Soc., № 137, с. 1
https://doi.org/10.1002/qj.776 - Cowan, Ocean and land forcing of the record-breaking Dust Bowl heatwaves across central United States, Nat. Commun., № 11, с. 1
https://doi.org/10.1038/s41467-020-16676-w - Deutsch, Impacts of climate warming on terrestrial ectotherms across latitude, Proc. Natl Acad. Sci. USA, № 105, с. 6668
https://doi.org/10.1073/pnas.0709472105 - Diffenbaugh, Observational and model evidence of global emergence of permanent, unprecedented heat in the 20th and 21st centuries, Clim. Change, № 107, с. 615
https://doi.org/10.1007/s10584-011-0112-y - Donat, Extraordinary heat during the 1930s US Dust Bowl and associated large-scale conditions, Clim. Dyn., № 46, с. 413
https://doi.org/10.1007/s00382-015-2590-5 - Dunn, Development of an updated global land in situ-based data set of temperature and precipitation extremes: hadEX3, J. Geophys. Res. Atmos., № 125
https://doi.org/10.1029/2019JD032263 - Easterling, Detection and attribution of climate extremes in the observed record, Weather Clim. Extremes, № 11, с. 17
https://doi.org/10.1016/J.WACE.2016.01.001 - Fitzpatrick, Contemporary climatic analogs for 540 North American urban areas in the late 21st century, Nat. Commun., № 10, с. 1
https://doi.org/10.1038/s41467-019-08540-3 - Frame, Population-based emergence of unfamiliar climates, Nat. Clim. Change, № 7, с. 407
https://doi.org/10.1038/nclimate3297 - Harrington, Poorest countries experience earlier anthropogenic emergence of daily temperature extremes, Environ. Res. Lett., № 11
https://doi.org/10.1088/1748-9326/11/5/055007 - Haustein, A limited role for unforced internal variability in twentieth-century warming, J. Clim., № 32, с. 4893
https://doi.org/10.1175/JCLI-D-18-0555.1 - Hawkins, Uncertainties in the timing of unprecedented climates, Nature, № 511, с. E3
https://doi.org/10.1038/nature13523 - Hawkins, Observed Emergence of the Climate Change Signal: From the Familiar to the Unknown, Geophys. Res. Lett., № 47
https://doi.org/10.1029/2019GL086259 - Hawkins, Time of emergence of climate signals, Geophys. Res. Lett., № 39
https://doi.org/10.1029/2011GL050087 - IPCC, Summary for policymakers, с. 3
https://doi.org/10.1017/9781009157896.001 - King, Identifying historical climate changes in Australia through spatial analogs, Environ. Res. Lett., № 18
https://doi.org/10.1088/1748-9326/ACC2D4 - King, Emergence of heat extremes attributable to anthropogenic influences, Geophys. Res. Lett., № 43, с. 3438
https://doi.org/10.1002/2015GL067448 - King, The timing of anthropogenic emergence in simulated climate extremes, Environ. Res. Lett., № 10
https://doi.org/10.1088/1748-9326/10/9/094015 - King, Climate change emergence over people’s lifetimes, Environ. Res.: Clim., № 2
https://doi.org/10.1088/2752-5295/ACEFF2 - King, The inequality of climate change from 1.5 to 2 °C of Global Warming, Geophys. Res. Lett., № 45, с. 5030
https://doi.org/10.1029/2018GL078430 - Lee, Synthesis report of the IPCC sixth assessment report (AR6)
- Lieber, ENSO Teleconnections More Uncertain in Regions of Lower Socioeconomic Development, Geophys. Res. Lett., № 49
https://doi.org/10.1029/2022GL100553 - Mahlstein, Emerging local warming signals in observational data, Geophys. Res. Lett., № 39
https://doi.org/10.1029/2012GL053952 - Mahlstein, Early onset of significant local warming in low latitude countries, Environ. Res. Lett., № 6
https://doi.org/10.1088/1748-9326/6/3/034009 - Mahony, Wetter summers can intensify departures from natural variability in a warming climate, Nat. Commun., № 9, с. 1
https://doi.org/10.1038/s41467-018-03132-z - Mahony, A closer look at novel climates: new methods and insights at continental to landscape scales, Glob. Change Biol., № 23, с. 3934
https://doi.org/10.1111/GCB.13645 - Mann, Robust estimation of background noise and signal detection in climatic time series, Clim. Change, № 33, с. 409
https://doi.org/10.1007/BF00142586 - Paik, Understanding climate changes in East Asia and Europe based on spatial climate analogs, Environ. Res. Lett., № 19
https://doi.org/10.1088/1748-9326/AD32E9 - Paik, Determining the Anthropogenic Greenhouse Gas Contribution To The Observed Intensification Of Extreme Precipitation, Geophys. Res. Lett., № 47
https://doi.org/10.1029/2019GL086875 - Povak, Evaluating climate change impacts on ecosystem resources through the lens of climate analogs, Front. For. Glob. Change, № 6
https://doi.org/10.3389/ffgc.2023.1286980 - Rayner, Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century, J. Geophys. Res., № 108, с. 4407
https://doi.org/10.1029/2002JD002670 - Reprint of 1936: Mahalanobis P C, On the generalized distance in statistics, Sankhya A, № 80, с. 1
https://doi.org/10.1007/s13171-019-00164-5 - Rohde, The Berkeley Earth land/ocean temperature record, Earth Syst. Sci. Data, № 12, с. 3469
https://doi.org/10.5194/essd-12-3469-2020 - Rohde, Berkeley earth temperature averaging process, Geoinf. Geostat., № 1, с. 20
https://doi.org/10.4172/2327-4581.1000103 - Schneider, GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle, Theor. Appl. Climatol., № 115, с. 15
https://doi.org/10.1007/s00704-013-0860-x - Slivinski, Towards a more reliable historical reanalysis: improvements for version 3 of the Twentieth Century Reanalysis system, Q. J. R. Meteorol. Soc., № 145, с. 2876
https://doi.org/10.1002/QJ.3598 - Veloz, Identifying climatic analogs for Wisconsin under 21st-century climate-change scenarios, Clim. Change, № 112, с. 1037
https://doi.org/10.1007/s10584-011-0261-z - Williams, Projected distributions of novel and disappearing climates by 2100 AD, Proc. Natl Acad. Sci. USA, № 104, с. 5738
https://doi.org/10.1073/pnas.0606292104 - Zscheischler, Future climate risk from compound events, Nat. Clim. Change, № 8, с. 469
https://doi.org/10.1038/s41558-018-0156-3
Дані публікації
Кількість цитувань | 0 |
Кількість джерел у списку літератури: | 42 |
Видання індексується в Scopus | Так |
Видання індексується в Web of Science | Так |